Superoxide dismutase mimetic drug tempol aggravates anti-GBM antibody-induced glomerulonephritis in mice.
نویسندگان
چکیده
Oxidative stress plays an important role in the pathogenesis of anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM-GN). Superoxide dismutase (SOD) is the first line of defense against oxidative stress by converting superoxide to hydrogen peroxide (H(2)O(2)). We investigated the effect of the SOD mimetic drug tempol on anti-GBM-GN in mice. 129/svJ mice were challenged with rabbit anti-mouse-GBM sera to induce GN and subsequently divided into tempol (200 mg.kg(-1).day(-1), orally) and vehicle-treated groups. Routine histology, SOD and catalase activities, malondialdehyde (MDA), H(2)O(2), and immunohistochemical staining for neutrophils, lymphocytes, macrophages, p65-NF-kappaB, and osteopontin were performed. Mice with anti-GBM-GN had significantly reduced renal SOD and catalase activities and increased H(2)O(2) and MDA levels. Unexpectedly, tempol administration exacerbated anti-GBM-GN as evidenced by intensification of proteinuria, the presence of severe crescentic GN with leukocyte influx, and accelerated mortality in the treated group. Tempol treatment raised SOD activity and H(2)O(2) level in urine, upregulated p65-NF-kappaB and osteopontin in the kidney, but had no effect on renal catalase activity. Thus tempol aggravates anti-GBM-GN by increasing production of H(2)O(2) which is a potent NF-kappaB activator and as such can intensify inflammation and renal injury. This supposition is supported by increases seen in p65-NF-kappaB, osteopontin, and leukocyte influx in the kidneys of the tempol-treated group.
منابع مشابه
Superoxide dismutase mimetic preserves the glomerular capillary permeability barrier to protein.
Overproduction of superoxide (O2*) occurs in glomerular disease and may overwhelm the capacity of superoxide dismutase (SOD), thereby intensifying oxidant injury by O2* and related radical species that disrupt the glomerular capillary permeability barrier to protein. We examined the efficacy of the SOD mimetic tempol in preserving glomerular permeability to protein using 1) a rat model of glome...
متن کاملTempol, a Superoxide Dismutase Mimetic Agent, Inhibits Superoxide Anion-Induced Inflammatory Pain in Mice
The present study evaluated the anti-inflammatory and analgesic effects of the superoxide dismutase mimetic agent tempol in superoxide anion-induced pain and inflammation. Mice were treated intraperitoneally with tempol (10-100 mg/kg) 40 min before the intraplantar injection of a superoxide anion donor, potassium superoxide (KO2, 30 μg). Mechanical hyperalgesia and thermal hyperalgesia, paw ede...
متن کاملUrine proteome scans uncover total urinary protease, prostaglandin D synthase, serum amyloid P, and superoxide dismutase as potential markers of lupus nephritis.
To identify potential biomarkers in immune-mediated nephritis, urine from mice subjected to an augmented passive model of anti-glomerular basement membrane (GBM)-induced experimental nephritis was resolved using two-dimensional gels. The urinary proteome in these diseased mice was comprised of at least 71 different proteins. Using orthogonal assays, several of these molecules, including serum a...
متن کاملCorrection: Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice
BACKGROUND Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on...
متن کاملThe superoxide dismutase mimetic tempol does not alleviate glucocorticoid‐mediated rarefaction of rat skeletal muscle capillaries
Sustained elevations in circulating glucocorticoids elicit reductions in skeletal muscle microvascular content, but little is known of the underlying mechanisms. We hypothesized that glucocorticoid-induced oxidative stress contributes to this phenomenon. In rats that were implanted with corticosterone (CORT) or control pellets, CORT caused a significant decrease in muscle glutathione levels and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 299 2 شماره
صفحات -
تاریخ انتشار 2010